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Abstract

In this paper we study a generalized Darboux Halphen system given by

ẋ1 = x2x3 − x1(x2 + x3) + τ2(α1, α2, α3, x1, x2, x3),

ẋ2 = x3x1 − x2(x3 + x1) + τ2(α1, α2, α3, x1, x2, x3),

ẋ3 = x1x2 − x3(x1 + x2) + τ2(α1, α2, α3, x1, x2, x3),

where x1, x2, x3 are real variables, α1, α2, α3 are real constants and

τ2(α1, α2, α3, x1, x2, x3) = α2
1(x1 − x2)(x3 − x1) + α2

2(x2 − x3)(x1 − x2) + α2
3(x3 − x1)(x2 − x3).

We prove that, for any (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, this system does not admit any non-constant global first integral that can be

described by a formal power series. Furthermore, restricting the values of (α1, α2, α3) to a full Lebesgue measure set, we prove
that this system does not admit any non-constant rational or Darbouxian global first integral. This is a first step toward proving that
this system is chaotic.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction to the problem

In this paper we consider the system

ẋ1 := F1(x1, x2, x3) = x2x3 − x1(x2 + x3) + τ 2(α1, α2, α3, x1, x2, x3),

ẋ2 := F2(x1, x2, x3) = x3x1 − x2(x3 + x1) + τ 2(α1, α2, α3, x1, x2, x3),

ẋ3 := F3(x1, x2, x3) = x1x2 − x3(x1 + x2) + τ 2(α1, α2, α3, x1, x2, x3),

(1)

where x1, x2, x3 are real variables, α1, α2, α3 are real constants and

τ 2(α1, α2, α3, x1, x2, x3) = α2
1(x1 − x2)(x3 − x1) + α2

2(x2 − x3)(x1 − x2) + α2
3(x3 − x1)(x2 − x3).
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We will refer to system (1) as the generalized Darboux–Halphen system since, when τ = 0, i.e., α1 = α2 = α3 = 0,
system (1) becomes the classical Halphen system which first appeared in Darboux’s work (see [12]). System (1)
arises in the study of SU(2)-invariant hypercomplex manifolds (see [17]) and is a reduction of the self-dual Yang-
Mills equations corresponding to an infinite-dimensional gauge group of diffeomorphism Diff(S3) of a three-sphere
(see [6]). Furthermore, it describes a class of self-dual Weyl Bianchi IX space-times with Euclidean signature (see
[5]). Special cases of (1) arise in the study of solvable models of spherically symmetric shear-free fluids in general
relativity (see [20]).

The question to be settled is the generic behavior of system (1): Is it chaotic or not? Many numerical computations
have been performed in this direction (see [2,3,14,18,21,22]) which seems to indicate a probable chaotic behavior
for this system. It is well known that the existence of complicated behavior of a system forbids its integrability and
thus, as a first step toward understanding the underlying mechanism for chaotic behavior of system (1), we will prove
analytically that, for almost all values of the parameters α1, α2, α3 ∈ R, system (1) does not admit any non-constant
global first integral that is neither a formal power series, nor a rational function, nor a Darbouxian function. We
emphasize that this is a first step toward proving that this system is chaotic. However, those results do not allow us
to conclude that the system is chaotic. To settle the question, one should go further and prove that the system has a
positive Lyapunov exponent, or has homoclinic/heteroclinic connections, or it is not analytically integrable.

Halphen showed in [16] that system (1) can be solved in terms of hypergeometric functions. Special solutions have
also been given in terms of theta functions and automorphic forms (see [1,15]). We want to point out that in [7] the
authors prove that, indeed, system (1) can be integrated explicitly, since they can express its general solution in terms
of transcendental and non-meromorphic functions. However, using [23] it is clear that these first integrals are not
global and are multi-valued non-algebraic functions. Therefore, the existence of those first integrals tells us nothing
about the presence or absence of chaotic behavior.

When τ = 0, system (1) has been intensively studied from the point of view of integrability and it has been
proved that it does not admit any non-constant first integral that can be described either by a rational function or by
a formal power series (see [24] for further references). The aim of this paper is then to study the existence of global
first integrals of system (1) when τ 6= 0. To do this, we will mainly use the theory of integrability of Darboux (see
[13,19]). This theory goes back to Darboux, who showed in [13] how to construct the first integrals of a polynomial
system ẋ = g(x). If we can determine polynomials f and K such that ∇ f · ẋ = K f , then the equation f = 0
describes a surface formed by trajectories; it is an algebraic solution of the system. Finally, one looks for the first
integrals as products of a sufficient number of algebraic functions f raised to a given power. The application of this
theory strongly depends on the desired results, and appropriate and additional techniques may need to be developed
in each particular case. We want to mention [4,8,9,19,25,26], among others, for further applications of this method in
different problems. In this paper, we apply the Darboux theory of integrability together with the following idea. The
three hyperplanes

H1 := x1 − x2 = 0, H2 := x1 − x3 = 0 and H3 := x2 − x3 = 0 (2)

are invariant by the flow of system (1) and, if f := f (x1, x2, x3) is a first integral of system (1), then for each
i = 1, 2, 3 the restriction of f to Hi = 0 is also a first integral of system (1) restricted to Hi = 0. Thus the method
of proof will consist of studying completely the integrability of the reduced system (1) on each Hi = 0 to get exact
information on the integrals of the whole system (1).

A formal first integral f = f (x1, x2, x3) of system (1) is a formal power series in the variables x1, x2, x3 such that∑3
k=1

∂ f
∂xk

Fk(x1, x2, x3) = 0.
The first main result of this paper is:

Theorem 1. For every (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, system (1) does not admit non-constant formal first integrals.

As a corollary we readily obtain the following result:

Theorem 2. For every (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, system (1) does not admit non-constant polynomial first

integrals.

Here, an analytic first integral of system (1) is an analytic function that is constant over the trajectories of system
(1) and is different from a polynomial. The second main result of this paper is:
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Theorem 3. For every (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, system (1) does not have analytic first integrals in a

neighborhood of the origin.

To introduce the two remaining main theorems in this paper, we introduce the following full-Lebesgue measure
set, Γ , of values of α:

Γ := {(α1, α2, α3) ∈ R3
\ {(0, 0, 0)} : for all (n1, n2, n3) ∈ Z3

\ {(0, 0, 0)},

n1α1 + n2α2 + n3α3 6∈ Z−
\ {0}}. (3)

A rational first integral f = f (x1, x2, x3) of system (1) is a rational function that is constant over the solutions of
system (1). The third main result of this paper is the following.

Theorem 4. For (α1, α2, α3) ∈ Γ , system (1) does not admit non-constant rational first integrals.

Finally, the last main result of this paper is concerned with the Darbouxian first integrals (see below for their
definition).

Theorem 5. For (α1, α2, α3) ∈ Γ , system (1) does not admit non-constant Darbouxian first integrals.

This paper is organized as follows. In Section 2, we introduce some generalities that will lead to the proof of all
the main theorems. In Section 3, we will prove Theorems 1 and 3. In Section 4, we will prove Theorem 4 and finally,
in Section 5, we will prove Theorem 5.

2. Generalities

Consider a polynomial system

ẋ j = X j (x1, . . . , xn), j = 1, . . . , n. (4)

We say that a non-constant polynomial f ∈ C[x1, . . . , xn] is a Darboux polynomial of system (4) if there exists
K ∈ C[x1, . . . , xn], called a cofactor of f , such that

∑n
j=1 X j

∂ f
∂x j

= K f . Note that if (X1, . . . , Xn) has degree k, then

K has degree at most k −1. Furthermore, d
dt f (x(t)) = K (x(t)) f (x(t)), where x(t) = (x1(t), . . . , xn(t)) is a solution

of system (4). Therefore, f = 0 is an invariant algebraic hypersurface for the flow of system (4), and a polynomial
first integral of system (4) is a Darboux polynomial with cofactor zero. If there exist invariant hyperplanes under the
flow of (4) and f is a Darboux polynomial of (4) with cofactor K , then the restriction of f to each of the invariant
hyperplanes is a Darboux polynomial of system (4) restricted to each of the hyperplanes and with cofactors being
the restriction of the cofactor K to each of the invariant hyperplanes. We note that, for real polynomial differential
systems, such as system (4), when we look for their Darbouxian first integrals we use, in general, complex Darboux
polynomials and complex exponential factors. This is due to the fact that these objects appear in pairs (it and its
conjugate) and this forces the Darbouxian first integral to become real. For more details, see [11]. It is simple to show
the following lemma.

Lemma 6. If we decompose the polynomial f into its irreducible factors in C[x1, . . . , xn] as
∏s

j=1 f
n j
j , n j ∈ N∪{0},

then f is a Darboux polynomial if and only if every f j is a Darboux polynomial. Moreover, if K and K j are the
cofactors of f and f j , then K =

∑s
j=1 n j K j .

The following statement is crucial to investigate the rational integrability of a polynomial system. It can be proved
easily, and thus its proof if not included.

Proposition 7. The existence of a rational first integral for a polynomial ordinary differential equation (4) implies
either: the existence of a polynomial first integral (and thus a Darboux polynomial with zero cofactor) or the existence
of two coprime Darboux polynomials with the same non-zero cofactor.

An exponential factor F of the polynomial differential system (4) is a function F = exp( f/g) 6∈ C with
f, g ∈ C[x1, . . . , xn], coprime and satisfying that

∑n
j=1 X j

∂ F
∂x j

= L F , for some polynomial L ∈ C[x1, . . . , xn].
Note that if (X1, . . . , Xn) has degree k, then L has degree at most k − 1. The proof of the following two results can
be found in [10] and [11].
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Proposition 8. If F = exp(h/g) is an exponential factor for the polynomial differential system (4) and g is not a
constant polynomial, then g = 0 is an invariant algebraic hypersurface of system (4) with multiplicity higher than 1.

A first integral G of system (4) is called Darboux if G = f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q , where f1, . . . , f p are Darboux

polynomials, F1, . . . , Fq are exponential factors, and λ j , µk ∈ C, for j = 1, . . . , p, k = 1, . . . , q.

Theorem 9. Suppose that the differential polynomial system (4) defined in Rn of degree m admits p invariant
algebraic hypersurfaces fi = 0 with cofactors Ki for i = 1, . . . , p and q exponential factors F j = exp(g j/h j )

with cofactors L j for j = 1, . . . , q. Then, there exist λ j , µ j ∈ C not all zero such that
∑p

i=1 λi Ki +
∑q

j=1 µ j L j = 0

if and only if the following real (multi-valued) function of Darboux type f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q , substituting f λi

i by
| fi |

λi if λi ∈ R, is a first integral of system (4).

3. Proof of Theorems 1 and 3

In this section, we prove Theorems 1 and 3. For this, we first introduce some preliminary results that will be used in
the proofs. The next result can be proved easily using Newton’s binomial formula, and thus its proof has been omitted.

Lemma 10. Let f = f (x1, x2, x3) be a formal power series such that in xl = x j , l, j ∈ {1, 2, 3}, l 6= j , we have
f (x1, x2, x3)|xl=x j

= f , where f is a formal power series in the variables x j , xk with k ∈ {1, 2, 3}, k 6= j and k 6= l.

Then, there exists a formal series g = g(x1, x2, x3) such that f = f + (xl − x j )g.

As pointed out in the introduction, the hyperplanes {x1 = x2}, {x1 = x3} and {x2 = x3} are invariant under the
flow of (1). Therefore, if f is a formal first integral of system (1), then

f1(x2, x3) = f (x2, x2, x3), f2(x2, x3) = f (x3, x2, x3), f3(x1, x3) = f (x1, x3, x3), (5)

are formal first integrals of system (1) restricted to the hyperplanes {x1 = x2}, {x1 = x3} and {x2 = x3}.

Proposition 11. For (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, if f is a formal first integral of system (1), then

f = c0 + (x1 − x2)(x1 − x3)(x2 − x3)g,

where c0 is some constant and g := g(x1, x2, x3) is a formal power series.

Proof. Let f be a formal first integral of system (1). We will first prove that f1 = c0. Indeed, f1 satisfies
−(x2

2 + α2
3(x2 − x3)

2)
∂ f1
∂x2

+ (x2
2 − 2x2x3 − α2

3(x2 − x3)
2)

∂ f1
∂x3

= 0. We now introduce the linear change of variables

y2 = x2, z2 = x2 − x3. (6)

In the new variables, we have f1(x2, x3) = h(y2, z2) and h satisfies

−(y2
2 + α2

3z2
2)

∂h

∂y2
− 2y2z2

∂h

∂z2
= 0. (7)

We want to prove that h = c0. For this, we write h in power series in the variables y2 and z2 as h =
∑

k,l≥0 hk,l yk
2 zl

2.
Thus, imposing that h satisfies (7), we get that

0 =

∑
k,l≥0

(k + 2l)hk,l yk+1
2 zl

2 + α2
3

∑
k,l≥0

khk,l yk−1
2 zl+1

2

=

∑
k,l≥0

(
(k + 2l − 1)hk−1,l + α2

3(k + 1)hk+1,l−1

)
yk

2 zl
2, (8)

where hm,n = 0 for m < 0 or n < 0. Now, computing the different degrees in the variables y2 and z2 in (8), we get
that, for k, l ≥ 0,

(k + 2l)hk,l + α2
3(k + 2)hk+2,l−1 = 0, (9)
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where hm,n = 0 for n < 0. We claim that

hk,l = 0 for k, l ≥ 0, (k, l) 6= (0, 0). (10)

We will prove (10) by induction over l. For l = 0, (9) implies that khk,0 = 0 for all k ≥ 0, which clearly yields hk,0 = 0
for all k > 0 and finishes the proof of (10) for l = 0. Now, assume that (10) is true for k = 0, . . . , m − 1 (m ≥ 1) and
we will prove it for k = m. By inductive hypothesis, hk,m satisfies (k +2m)hk,m = 0 for k ≥ 0, which yields hk,m = 0
for k ≥ 0. Then, (10) is proved for k = m and, by induction, (10) holds. Then, from (10) we get that h = h0,0 := c0
and, in view of (6), we obtain f1(x2, x3) = c0. Then, using Lemma 10 with xl = x1 and x j = x2, we obtain

f = c0 + (x1 − x2)g0, (11)

for some formal power series g0 := g0(x1, x2, x3).
Now, repeating for f2 the arguments we made for f1, we get that there exists a positive constant c1 and a formal

power series g1 := g1(x1, x2, x3), such that

f = c1 + (x1 − x3)g1. (12)

Finally, repeating for f3 the arguments we made for f1, we get that there exists a positive constant c2 and a formal
power series g2 := g2(x1, x2, x3), such that

f = c2 + (x2 − x3)g2. (13)

Now, evaluating Eqs. (11)–(13) on x1 = x2 = x3 = 0 and equating them, we get that c0 = c1 = c2. Furthermore,
equating (11)–(13), we get (x1 − x2)g0 = (x1 − x3)g1 = (x2 − x3)g2, which clearly implies that there exists a formal
power series g := g(x1, x2, x3) such that

g0 = (x1 − x3)(x2 − x3)g, g1 = (x1 − x2)(x2 − x3)g, g2 = (x1 − x2)(x1 − x3)g. (14)

Therefore, the proposition follows from (11) and the first relation in (14). �

Proof of Theorem 1. Let f be any formal first integral of system (1). By Proposition 11, we know that f can be
written as

f = c0 + (x1 − x2)(x1 − x3)(x2 − x3)g, (15)

for some constant c0 and some formal power series g := g(x1, x2, x3). Imposing that f is a first integral of system
(1), we get that, after simplifying by (x1 − x2)(x1 − x3)(x2 − x3), g must satisfy

dg

dt
= 2(x3 + x2 + x1)g, (16)

where the derivative is evaluated along a solution of system (1). We will prove that g = 0. For this, we will proceed
by reduction to the absurd. Assume that g 6= 0 and we will reach a contradiction. We consider two different cases.

Case 1: g is not divisible by x1 − x2. In this case, using Lemma 10 with xl = x1 and x j = x2, we can write g as
g = g0 + (x1 − x2)g1, where g0 := g0(x2, x3) 6= 0 and g1 := g1(x1, x2, x3) are formal power series. Then, g0 satisfies
(16) restricted to x1 = x2. Thus, introducing again the change of variables (6), we have that, in the new variables, if
g0(x2, x3) = h0(y2, z2) then h0 satisfies

−(y2
2 + α2

3z2
2)

∂h0

∂y2
− 2y2z2

∂h0

∂z2
= 2(3y2 − z2)h0. (17)

Now, we write h0 =
∑

j≥0 h0, j z
j
2 , h j = h j (y2) and h j are formal power series for each j . We claim that

h0, j = 0 for j ≥ 0. (18)

Clearly, h0,0 satisfies (17) restricted to z2 = 0, that is, −y2
2

dh0,0
dy2

= 6y2h0,0, i.e., h0,0 =
c
y6

2
, where c ∈ C. Since h0,0

is a formal series in the variable y2, we have that c = 0 and, thus, h0,0 = 0, which proves (18) for j = 0. Now, we
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assume that (18) is true for j = 0, . . . , m − 1 (m ≥ 1) and we will prove it for j = m. Clearly, by hypothesis of
induction, h0 =

∑
j≥0 h0, j+m z j+m

2 and then, from (17), after dividing by zm
2 , we obtain

−(y2
2 + α2

3z2
2)

∑
j≥0

dh0, j+m

dy2
z j

2 − 2y2

∑
j≥0

( j + m)h0, j+m z j
2 = 2(3y2 − z2)

∑
j≥0

h0, j+m z j
2 . (19)

Then, evaluating (19) on z2 = 0, we get −y2
2

dh0,m
dy2

= y2(6 + 2m)h0,m , that is, h0,m =
cm

y6+2m
2

, where cm ∈ C. Since

h0,m is a formal series in the variable y2, we have that cm = 0 and, thus, h0,m = 0, which proves (18) for j = m.
Then, by the induction process, (18) holds, and from (18) we get that h0 = 0. Hence, using (6) we obtain that g0 = 0,
a contradiction.

Case 2: g is divisible by x1 − x2. In this case, g = (x1 − x2)
j G with j ≥ 1, G 6= 0 and G := G(x1, x2, x3)

is a formal power series such that is not divisible by x1 − x2 and satisfies, after dividing by (x1 − x2)
j (see (16)),

dG
dt = 2(x1 + x2 + ( j + 1)x3)G, where the derivative of G is evaluated along a solution of system (1). Then, the same

arguments used for g allow us to conclude that G = 0, a contradiction.
Hence, g = 0 and the proof of the theorem follows from (15). �

Proof of Theorem 3. To prove that system (1) does not have non-constant analytic first integrals in a neighborhood
of zero, we proceed by contradiction. Assume that g is a non-constant analytic first integral of system (1) in a
neighborhood U ⊂ R3 of the origin. Clearly, g|U can be written as a formal power series which turns out to be
convergent. Hence, in U , g is a non-constant formal first integral of system (1), a contradiction with Theorem 1. Thus,
Theorem 3 is proved. �

4. Proof of Theorem 4

We recall that the equation defining a Darboux polynomial f for system (1) is ẋ1
∂ f
∂x1

+ ẋ2
∂ f
∂x2

+ ẋ3
∂ f
∂x3

= K f .
Furthermore, since the polynomials in the right-hand side of (1) have degree three, the cofactor K has degree at most
two. We write it as K = a0 + a1x1 + a2x2 + a3x3.

In the notation introduced in (5), we have that f1, f2 and f3 are Darboux polynomials of system (1) restricted to
the hyperplanes {x1 = x2}, {x1 = x3} and {x2 = x3} with cofactors K1, K2 and K3, respectively, where K1 is the
restriction of K to {x1 = x2}, K2 is the restriction of K to {x1 = x3}, and K3 is the restriction of K to {x2 = x3}.

To prove Theorem 3 with the help of Proposition 7 and Theorem 2, we will establish, in this section, the following
statement.

Theorem 12. For (α1, α2, α3) ∈ Γ , every Darboux polynomial f of system (1) is of the form f = cHn1
1 Hn2

2 Hn3
3 :=

c(x1 − x2)
n1(x1 − x3)

n2(x2 − x3)
n3 , where c is some constant and n1, n2, n3 are non-negative integers. Furthermore,

the cofactor of f is K = −2n1x3 − 2n2x2 − 2n3x1.

The main objective of this section is to prove Theorem 12 since, as will be clear later, this will readily imply the
proof of Theorem 4. For this, we first prove that, to study the Darboux polynomials of system (1), it is enough to
consider homogeneous Darboux polynomials and the cofactor is just K = a1x1 + a2x2 + a3x3. This is stated in the
following two propositions. They can be proved easily and hence their proofs have been omitted.

Proposition 13. For (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, any Darboux polynomial f 6= 0 of system (1) has a cofactor of

the form K = a1x1 + a2x2 + a3x3.

Proposition 14. For (α1, α2, α3) ∈ R3
\ {(0, 0, 0)}, if we write f in the sum of its homogeneous parts as f =

f1 + · · · + fn , then f is a Darboux polynomial of system (1) with cofactor K if and only if, for all j = 1, . . . , n, f j
is a Darboux polynomial of system (1) with cofactor K .

In view of Proposition 13, from now on we will work with the cofactor K as in Proposition 13.
Now, to prove Theorem 12 we will prove two auxiliary results. The first one deals with irreducible homogeneous

Darboux polynomials of degree one and the second one deals with irreducible homogeneous Darboux polynomials of
degree greater than or equal to two.
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Proposition 15. For (α1, α2, α3) ∈ Γ , the unique homogeneous Darboux polynomials of system (1) of degree one are
H1 := x1 − x2, H2 := x1 − x3 and H3 := x2 − x3, respectively, with cofactors, −2x3, −2x2 and −2x1.

Proof. Let (α1, α2, α3) ∈ Γ (see (3)) and let f be an homogeneous Darboux polynomial of system (1) of degree one.
We introduce the change of variables

y1 = x1, y2 = x1 − x2, y3 = x1 − x3. (20)

In the new variables, we have f (x1, x2, x3) = g(y1, y2, y3) and g := g(y1, y2, y3) is an homogeneous polynomial of
degree one. We write it as g = b1 y1 + b2 y2 + b3 y3, (b1, b2, b3) ∈ C3

\ {(0, 0, 0)}. Then, g is a Darboux polynomial
of system

ẏ1 = −y2
1 − α2

2 y2
2 − α2

3 y2
3 + y2 y3(1 − α2

1 + α2
2 + α2

3),

ẏ2 = −2(y1 − y3)y2, ẏ3 = −2(y1 − y2)y3,

with cofactor K = (a1 + a2 + a3)y1 − a2 y2 − a3 y3. Hence, it satisfies

−2(y1 − y3)y2b2 − 2(y1 − y2)y3b3 + b1(−y2
1 − α2

2 y2
2 − α2

3 y2
3 + y2 y3(1 − α2

1))

+ b1 y2 y3(α
2
2 + α2

3) = ((a1 + a2 + a3)y1 − a2 y2 − a3 y3)(b1 y1 + b2 y2 + b3 y3). (21)

Equating the terms in (21) of degree two in the variable y1, we get that −b1 = (a1 + a2 + a3)b1 and thus we can have
two different cases.

Case 1: b1 6= 0. In this case,

a1 + a2 + a3 = −1. (22)

Then, equating in (21) the terms of degree two in the variables y2 and y3, we get

α2
2b1 = a2b2, α2

3b1 = a3b3. (23)

Now, equating in (21) the coefficients of the variables y1 y2 and y1 y3, we obtain

b2 = a2b1, b3 = a3b1. (24)

Then, from (23) and (24) it follows that a2
2 = α2

2 and a2
3 = α2

3 . Finally, equating in (21) the coefficients of the variable
y2 y3, and using (23), (24) and (22), we get that

0 = 2b2 + 2b3 + (1 − α2
1 + a2

2 + a2
3)b1 + a3b2 + a2b3

= b1((a2 + a3)
2
+ 2(a2 + a3) + 1 − α2

1)

= b1((1 + a1)
2
− 2(1 + a1) + 1 − α2

1) = b1(a
2
1 − α2

1),

which yields a2
1 = α2

1 . Thus, a1 = ±α1, a2 = ±α2, a3 = ±α3, and from (22) we obtain ±α1 ± α2 ± α3 = −1, a
contradiction with the fact that (α1, α2, α3) ∈ Γ . Thus, this case is not possible.

Case 2: b1 = 0. In this case, equating the terms of degree two in the variables y2 and y3, we get a2b2 = 0 and
a3b3 = 0. Clearly, b2 = b3 = 0 would imply that g = 0, and thus f = 0, a contradiction. Hence this case is not
possible. We consider the three different possibilities.

Case 2.1: b1 = a2 = b3 = 0, b2 6= 0. In this case, g = b2 y2 and, after dividing by b2, from (21)
we get −2(y1 − y3)y2 = (a1 + a3)y2 y1 − a3 y2 y3, which yields a3 = −2, a1 = 0. Then, from (20) we get
f = b2(x1 − x2) = b2 H1 and K = −2x3.

Case 2.2: b1 = a3 = b2 = 0, b3 6= 0. In this case, g = b3 y3 and, after dividing by b3, from (21)
we get −2(y1 − y2)y3 = (a1 + a2)y3 y1 − a2 y2 y3, which yields a2 = −2, a1 = 0. Then, from (20) we get
f = b3(x1 − x3) = b3 H2 and K = −2x2.

Case 2.3: b1 = a2 = a3 = 0. In this case, g = b2 y2 + b3 y3 and from (21) we get −2(y1 − y3)y2b2 −

2(y1 − y2)y3b3 = a1b2 y2 y1 + a1b3 y1 y3, which yields b2 = −b3 and a1 = −2. Then, from (20) we get
f = b3(x2 − x3) = b3 H3 and K = −2x1.

Thus, the proposition is proved. �
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Proposition 16. For (α1, α2, α3) ∈ Γ , let f be an irreducible homogeneous Darboux polynomial of system (1) with
degree at least two and cofactor K , as in Proposition 13. Then K = 0.

To prove Proposition 16, we will show that each of the coefficients a1, a2 and a3 in the definition of K given in
Proposition 13 is zero for any Darboux polynomial of system (1) of degree greater than or equal to two. For this, we
shall need the following preliminary result, which describes the Darboux polynomials and their cofactors of system
(1) restricted to each one of H j , j = 1, 2, 3, defined in (2).

Proposition 17. Let f := f (x2, x3) be a homogeneous Darboux polynomial of degree n ≥ 2 of system (1) restricted
to x1 = x2 with cofactor K = c2x2 + c3x3, where (c2, c3) ∈ C2

\ {(0, 0)}. The following holds:
If α3 = 0 and f 6= 0, then c3 = 0, c2 ∈ N−

\ {0}, −2n ≤ c2 ≤ −n and there exists a positive constant d0 such that
f = d0(x2 − x3)

−n−c2 xc2+2n
2 .

If α3 6= 0 and f 6= 0, then c3/α3 ∈ Z, c2 +c3 ∈ N−
\{0}, −2n ≤ c2 +c3 ≤ −n and −n/2 ≤ c3/α3 ≤ n/2. Moreover,

there exists a positive constant d1 such that f = d1(x2 − x3)
−n−c2−c3(x2 − α3(x2 − x3))

A1(x2 + α3(x2 − x3))
B1 ,

where

A1 =
1
2

(
c2 + c3 + 2n −

c3

α3

)
, B1 =

1
2

(
c2 + c3 + 2n +

c3

α3

)
. (25)

Proof. Let f be a homogeneous Darboux polynomial of system (1) restricted to x1 = x2 with cofactor K = c2x2 +

c3x3, where (c2, c3) ∈ C2
\ {(0, 0)}. We introduce the change of variables in (6) and denote g1(y2, z2) = f (x2, x3).

Then, it is clear that g1 satisfies

−(y2
2 + α2

3z2
2)

∂g1

∂y2
− 2y2z2

∂g1

∂z2
= ((c2 + c3)y2 − c3z2)g1. (26)

Now, we introduce the change

u2 = y2/z2, w2 = z2. (27)

In the new variables, we have that g1(y2, z2) = h(u2, w2) with h a polynomial. We consider the polynomial h in the
region w2 6= 0 and use its finite power series to define a polynomial h1 := h1(u2, w2) for arbitrary w2. Furthermore, if
g1 =

∑n
k=0 gk,n−k yk

2 zn−k
2 , then h1 = wn

2

∑n
k=0 gk,n−kuk

2 := wn
2 F(u2). Clearly, in view of (26), F := F(u2) satisfies

(u2
2 − α2

3)
dF

du2
= ((c2 + c3 + 2n)u2 − c3)F. (28)

Now, we consider two different cases.

Case 1: α3 = 0. In this case, solving (28), we obtain that there exists a constant d0 > 0 such that F = d0uc2+c3+2n
2 e

c3
u2 .

Since F must be a polynomial, it must hold that c3 = 0 and c2 ∈ Z with c2 ≥ −2n. Hence, in this case

h1 = d0w
n
2 uc2+2n

2 . (29)

In any other case, F = 0, which obviously yields h1 = 0 and thus f = 0. When c3 = 0, c2 ∈ Z, c2 ≥ −2n, from (29)
and (27), g1 = d0z−n−c2

2 yc2+2n
2 . Since g1 must be a polynomial, it must hold that −n−c2 ≥ 0 and, thus, c2 ∈ N−

\{0}

with −2n ≤ c2 ≤ −n. Hence, in this case, the proposition follows, taking into account (6).

Case 2: α3 6= 0. In this case, solving (28), we obtain that there exists a constant d1 such that F = d1(u2 −α3)
A1(u2 +

α3)
B1 , where A1 and B1 were introduced in (25). Since F must be a polynomial, A1, B1 ∈ N. In particular, since

B1 − A1 = c3/α3, we get that

c3/α3 ∈ Z with −
c2 + c3 + 2n

2
≤

c3

α3
≤

c2 + c3 + 2n

2
. (30)

Furthermore, since A + B ∈ N, we obtain that c2 + c3 ∈ Z and c2 + c3 ≥ −2n. Hence, in this case

h1 = d1w
n
2 (u2 − α3)

A1(u2 + α3)
B1 , (31)

and in any other case F = 0, which obviously yields h1 = 0, and thus f = 0.
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When c3/α3 ∈ Z, c2 + c3 ∈ Z, c2 + c3 ≥ −2n, from (31) and (27) we get that

g1 = d1z−n−c2−c3
2 (y2 − α3z2)

A1(y2 + α3z2)
B1 . (32)

Since g1 must be a polynomial, it must hold that −n − c2 − c3 ≥ 0 and thus, c2 + c3 ∈ N−
\ {0} with

−2n ≤ c2 + c3 ≤ −n. Then, from (30), −n/2 ≤ c3/α3 ≤ n/2. Therefore, the proposition follows from (32)
and (6). �

The following two propositions can be proved in a similar manner to Proposition 17. Hence, their proofs have been
omitted.

Proposition 18. Let f̂ := f̂ (x2, x3) be a homogeneous Darboux polynomial of degree n ≥ 2 of system (1) restricted
to x1 = x3 with cofactor K = c2x2 + c3x3, where (c2, c3) ∈ C2

\ {(0, 0)}. Then, it holds that:
If α2 = 0 and f̂ 6= 0, then c2 = 0, c3 ∈ N−

\ {0}, −2n ≤ c3 ≤ −n and there exists a positive constant d2 such that
f = d2(x3 − x2)

−n−c3 xc3+2n
3 .

If α2 6= 0 and f̂ 6= 0, then c2/α2 ∈ Z, c2 + c3 ∈ N−
\ {0}, −2n ≤ c2 + c3 ≤ −n, −n/2 ≤ c2/α2 ≤ n/2, and there

exists a positive constant d3 such that f̂ = d3(x3 − x2)
−n−c2−c3(x3 − α2(x3 − x2))

A2(x3 + α2(x3 − x2))
B2 , where

A2 =
1
2

(
c2 + c3 + 2n −

c2
α2

)
and B2 =

1
2

(
c2 + c3 + 2n +

c2
α2

)
.

Proposition 19. Let f̃ := f̃ (x1, x3) be a homogeneous Darboux polynomial of degree n ≥ 2 of system (1) restricted
to x2 = x3 with cofactor K = c1x1 + c3x3, where (c1, c3) ∈ C2

\ {(0, 0)}. Then, it holds that:
If α1 = 0 and f̃ 6= 0, then c1 = 0, c3 ∈ N−

\ {0}, −2n ≤ c3 ≤ −n and there exists a positive constant d4 such that
f = d4(x1 − x3)

−n−c3 xc3+2n
1 .

If α1 6= 0 and f̃ 6= 0, then c1/α1 ∈ Z, c1 + c3 ∈ N−
\ {0}, −2n ≤ c1 + c3 ≤ −n, −n/2 ≤ c1/α1 ≤ n/2, and there

exists a positive constant d5 such that f̃ = d5(x1 − x3)
−n−c1−c3(x1 − α1(x1 − x3))

A3(x1 + α1(x1 − x3))
B3 , where

A3 =
1
2

(
c1 + c3 + 2n −

c1
α1

)
and B3 =

1
2

(
c1 + c3 + 2n +

c1
α1

)
.

Proof of Proposition 16. The proof will be done by reduction to the absurd. Let (α1, α2, α3) ∈ Γ and f be an
irreducible homogeneous Darboux polynomial of degree n ≥ 2 of system (1) with cofactor K = a1x1 + a2x2 + a3x3
with (a1, a2, a3) ∈ C3

\ {(0, 0, 0)}. From the fact that f is irreducible, it is clear that f1 6= 0, f2 6= 0 and f3 6= 0,
since otherwise f would be divisible by x1 − x2 or by x1 − x3 or by x2 − x3, a contradiction.

Furthermore, since f1, f2 and f3 are, respectively, homogeneous Darboux polynomials of system (1) restricted to
x1 = x2, x1 = x3 and x2 = x3, we can apply Proposition 17 with f = f1, c2 = a1 + a2, c3 = a3, Proposition 18 with
f̂ = f2, c2 = a2, c3 = a1 + a3, and Proposition 19 with f̃ = f3, c1 = a1 and c3 = a2 + a3. Doing so, we consider
different cases.

Case 1: α1 = α2 = α3 = 0. In this case, from Propositions 17–19, we have a1 = a2 = a3 = 0, a contradiction
with the fact that f is an homogeneous Darboux polynomial with non-zero cofactor K .

Case 2: There exists {i, j, k} ∈ {1, 2, 3} with i 6= j , i 6= k, j 6= k such that αi = α j = 0 and αk 6= 0. Without loss
of generality, we can assume i = 1, j = 2 and k = 3. In this case, from Propositions 18 and 19, we have a1 = a2 = 0
and a3 ∈ N−

\ {0}. Furthermore, from Proposition 17, we have a3/α3 ∈ Z \ {0}. Then, there exists N1 ∈ Z \ {0} such
that α3 N1 = a3 ∈ N−

\ {0}, a contradiction with the fact that (α1, α2, α3) ∈ Γ .
Case 3: There exists {i, j, k} ∈ {1, 2, 3} with i 6= j , i 6= k, j 6= k such that αi = 0, α j 6= 0 and αk 6= 0. Without

loss of generality, we can assume i = 1, j = 2 and k = 3. Then, from Proposition 19 we have a1 = 0, and from
Propositions 18 and 17 we have that a2/α2 ∈ Z and a3/α3 ∈ Z with a2 + a3 ∈ N−

\ {0}. Then, since either a2 6= 0 or
a3 6= 0, there exists N1, N2 ∈ Z with N1 + N2 6= 0 such that α2 N1 + α3 N2 = a2 + a3 ∈ N−

\ {0}, a contradiction
with the fact that (α1, α2, α3) ∈ Γ .

Case 4: α1 6= 0, α2 6= 0 and α3 6= 0. In this case, from Propositions 17–19, we have a1/α1 ∈ Z, a2/α2 ∈ Z,
a3/α3 ∈ Z and a1 + a2 + a3 ∈ N−

\ {0}. Then, since either a1 6= 0 or a2 6= 0 or a3 6= 0, there exists N1, N2, N3 ∈ Z
with N1 + N2 + N3 6= 0 such that α1 N1 + α2 N2 + α3 N3 = a1 + a2 + a3 ∈ N−

\ {0}, a contradiction with the fact that
(α1, α2, α3) ∈ Γ .

Thus, the proposition is proved. �
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Proof of Theorem 12. If f has degree one, the proof of Theorem 12 follows directly from Proposition 15. Now,
assume that system (1) has a irreducible Darboux polynomial with degree at least two and with cofactor K 6= 0 given
as in Proposition 13. From Proposition 14, we can assume that f is an homogeneous irreducible Darboux polynomial
of degree at least two and cofactor K 6= 0. Then, from Proposition 16, we reach a contradiction. Thus, all irreducible
Darboux polynomials with cofactor K 6= 0, as in Proposition 13, must come from irreducible Darboux polynomials
of system (1) of degree one, i.e., H1 = x1 − x2, H2 = x1 − x3 and H3 = x2 − x3. Furthermore, from Theorem 2,
we know that all Darboux polynomials of system (1) with cofactor zero, i.e., polynomial first integrals, are constants.
These facts, together with Lemma 6, imply the proof of the theorem. �

Proof of Theorem 4. By Theorem 12, it follows that every Darboux polynomial of system (1) is of the form
cHm

1 Hn
2 H l

3 with cofactor

K = −2(mx3 + nx2 + lx1), (33)

where m, n and l are non-negative integers, and c is some constant.
From Proposition 7 and Theorem 2, the existence of a non-constant rational first integral implies the existence

of two coprime Darboux polynomials with the same non-zero cofactor. So, the first integral must be of the form
R/S = c0 Hm1

1 Hn1
2 H l1

3 /c1(Hm2
1 Hn2

2 H l2
3 ) with at most one mi , ni and li non-zero, and the cofactors of R and S must

be equal.
Then, according to (33), the equality of the cofactors of R and S implies that 2(m1 − m2)x3 + 2(n1 − n2)x2 +

2(l1 − l2)x1 = 0. Hence, m1 = m2, n1 = n2, l1 = l2, a contradiction with the fact that R and S are coprime. Thus,
the theorem is proved. �

5. Proof of Theorem 5

We recall that the equation defining the exponential factor F = exp(h/g) with cofactor L for system (1) is

ẋ1
∂

∂x1

(
h

g

)
+ ẋ2

∂

∂x2

(
h

g

)
+ ẋ3

∂

∂x3

(
h

g

)
= L , (34)

where we have simplified the common factor F , and

L = b0 + b1x1 + b2x2 + b3x3. (35)

According to Proposition 8 and Theorems 2 and 12, if system (1) has exponential factors, they must be of the form
exp(h/(Hn1

1 Hn2
2 Hn3

3 )), where h ∈ C[x1, x2, x3] and n1, n2, n3 ∈ N ∪ {0}.
To prove Theorem 5 with the help of Theorem 9 we shall introduce and prove the following statement.

Proposition 20. For (α1, α2, α3) ∈ Γ , system (1) does not admit non-constant exponential factors.

Proof. We start by showing that if system (1) has an exponential factor of the form exp(h), then h is a constant.
Applying (34) with h/g = h, we get

ẋ1
∂h

∂x1
+ ẋ2

∂h

∂x2
+ ẋ3

∂h

∂x3
= L (36)

with L given by (35). Taking x1 = x2 = x3 = 0 in (36), we obtain b0 = 0. Now, letting x1 = x2 = 0 in (36), we get

−α2
3 x2

3

(
∂ f

∂x1 |x1=x2=0
+

∂ f

∂x2 |x1=x2=0
+

∂ f

∂x3 |x1=x2=0

)
= b3x3, (37)

where, for j = 1, 2, 3, ∂ f
∂x j |x1=x2

means the restriction to x1 = x2 of ∂ f/∂x j . Eq. (37) obviously implies b3 = 0.

Analogously, setting x1 = x3 = 0 in (36) we get b2 = 0, and setting x2 = x3 = 0 in (36) we get b1 = 0. Thus, L = 0
and (36) reduces to dh

dt = 0, i.e., h is a polynomial first integral of system (1). From Theorem 2, we get that h is a
constant.
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Suppose that exp(h/(Hn1
1 Hn2

2 Hn3
3 )) is an exponential factor of system (1), where n1, n2, n3 are non-negative

integers with at least one of them positive, and h is coprime with H1, H2 and H3. Then, h satisfies

ẋ1
∂h

∂x1
+ ẋ2

∂h

∂y2
+ ẋ3

∂h

∂x3
−

(
Ḣ1

H1
n1 +

Ḣ2

H2
n2 +

Ḣ3

H3
n3

)
h = L Hn1

1 Hn2
2 Hn3

3 . (38)

Without loss of generality, we can assume that n1 > 0. Taking H1 = 0 in (38) and denoting by h1 the restriction
of h to H1 = 0, we conclude that h1 satisfies

−(x2
2 + α2

3(x2 − x3)
2)

∂h1

∂x2
+ (x2

2 − 2x2x3 − α2
3(x2 − x3)

2)
∂h1

∂x3
= −2(n1x3 + (n2 + n3)x2)h1. (39)

Since, by hypothesis, h is coprime with H1, we have that h1 6= 0. Furthermore, from (39), h1 is a Darboux polynomial
of system (1) restricted to x1 = x2 with cofactor K = −2(n1x3 + (n2 + n3)x2). In view of Proposition 14, we can
assume that h1 is homogeneous. Then, from Proposition 17 and since h1 6= 0, we must have:
If α1 = 0, then −2n1 = 0, a contradiction with the fact that n1 > 0.
If α1 6= 0, then −2n1/α1 ∈ Z \ {0}. Hence, there exists N ∈ Z−

\ {0} such that Nα1 = −2n1 ∈ N−
\ {0}, a

contradiction with the fact that (α1, α2, α3) ∈ Γ .
This completes the proof of the proposition. �

Proof of Theorem 5. From Theorems 2, 9 and 12 and Proposition 20, if system (1) has a Darboux first integral G,
then G = cHλ1

1 Hλ2
2 Hλ3

3 where c, λ1λ2, λ3 ∈ C. Since G is a first integral, it must hold 2(λ1x3 + λ2x2 + λ3x1) = 0.
This implies that λ1 = λ2 = λ3 = 0, and completes the proof of the theorem. �
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